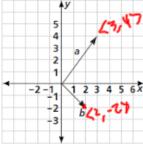
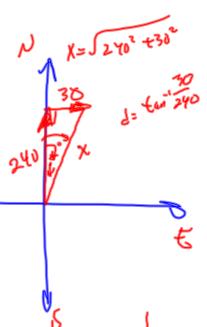
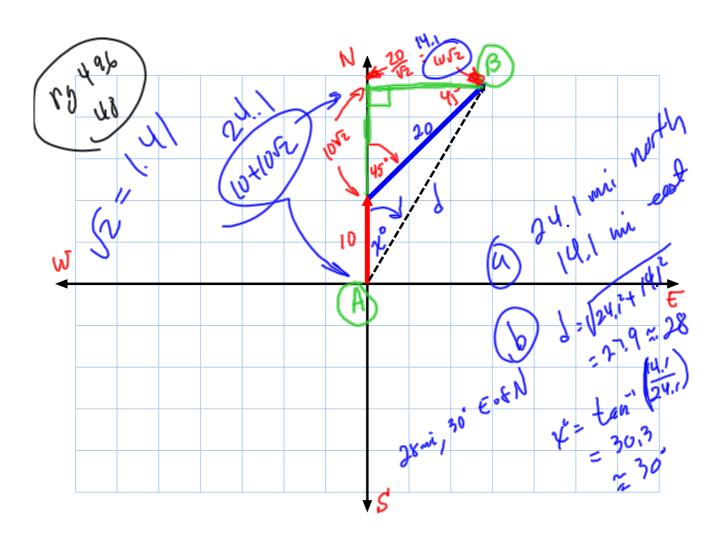

L9.5

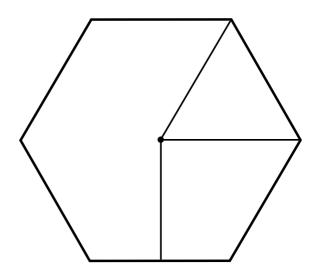


Use the diagram for Exercises 1 and 2.



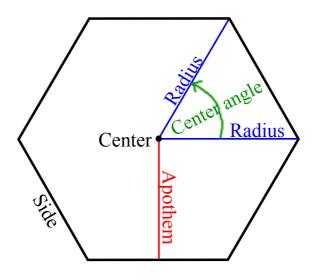

- 1. Describe the vector as an ordered pair. Round coordinates to the nearest tenth.
- 2. Use compass directions to describe the direction of \overrightarrow{ON} .
- 3. Iris rode her bike 30 mi south and 16 mi west of her home. Her trip can be described by the vector ⟨−16, −30⟩. Use distance and direction to describe the vector a second way.
- 4. Write the vector $\vec{v} = \vec{a} + \vec{b}$ as an ordered pair.

5. An airplane has a speed of 240 mi/h in still air. The plane heads due north and encounters a 30-mi/h wind blowing due east. Find the resultant speed and direction. Round to the nearest unit.



L9.5

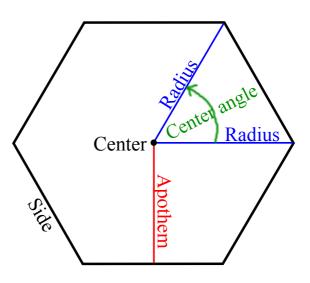
Label the following parts:


- Center
- Radius
- Apothem
- Center angle
- Side

L9.5

Label the following parts:

- Center
- Radius
- Apothem
- Center angle
- Side

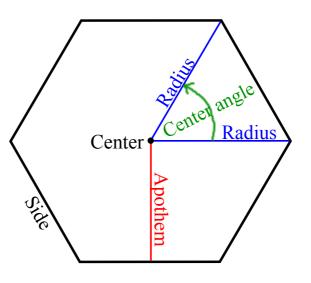


L9.5

Label the following parts:

- Center
- Radius
- Apothem
- Center angle
- Side

What is the formula for the area of a regular polygon?


19.5

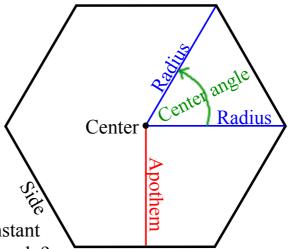
Label the following parts:

- Center
- Radius
- Apothem
- Center angle
- Side

What is the formula for the area of a regular polygon?

$$A = \frac{1}{2} ap$$

L9.5


Label the following parts:

- Center
- Radius
- Apothem
- Center angle
- Side

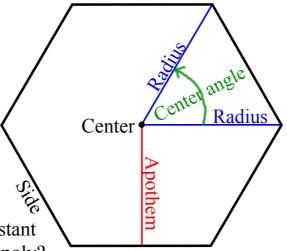
What is the formula for the area of a regular polygon?

$$A = \frac{1}{2} ap$$

Which of these parts are constant for a specific type of regular poly?

L9.5

Label the following parts:


- Center
- Radius
- Apothem
- Center angle
- Side

What is the formula for the area of a regular polygon?

$$A = \frac{1}{2} ap$$

Which of these parts are constant for a specific type of regular poly?

Only center angle

What is the measure of the center angle of a regular n-gon?

L9.5

What is the measure of the center angle of a regular n-gon?

$$\frac{360}{n}^{\circ}$$

19.5

What is the measure of the center angle of a regular n-gon?

 $\frac{360}{n}^{\circ}$

\mathcal{C}	\mathcal{C}	0
# Sides	Poly Name	Center Angle Measure
3		
4		
5		
6		
8		
9		
10		
n		

L9.5

What is the measure of the center angle of a regular n-gon?

 $\frac{360}{n}^{\circ}$

# Sides	Poly Name	Center Angle Measure
3	triangle	120
4	quadrilateral	90
5	pentagon	72
6	hexagon	60
8	octagon	45
9	nonagon	40
10	decagon	36
n	<i>n</i> -gon	360 _{/n}

L9.5

What is the measure of the center angle of a regular n-gon?

 $\frac{360}{n}^{\circ}$

In chapter 7 we found the area_ of various reg polys...which of these did you work with?

# Slucs	Poly Name	Center Angle Measure
3	triangle	120
4	quadrilateral	90
5	pentagon	72
6	hexagon	60
8	octagon	45
9	nonagon	40
10	decagon	36
n	<i>n</i> -gon	360/ _n

L9.5

What is the measure of the center angle of a regular n-gon?

 $\frac{360}{n}^{\circ}$

In chapter 7 we found the area of various reg polys...which of these did you work with?

Triangle Quad Hexagon

# Slues	Poly Name	Center Angle Measure
3	triangle	120
4	quadrilateral	90
5	pentagon	72
6	hexagon	60
8	octagon	45
9	nonagon	40
10	decagon	36
n	<i>n</i> -gon	360/ _n

L9.5

What is the measure of the center angle of a regular n-gon?

3	6	0	0
	n		

In chapter 7 we found the area of various reg polys...which of these did you work with?

Triangle Quad Hexagon

Why only those?

Poly Name	Center Angle Measure
triangle	120
quadrilateral	90
pentagon	72
hexagon	60
octagon	45
nonagon	40
decagon	36
<i>n</i> -gon	360/ _n
	quadrilateral pentagon hexagon octagon nonagon decagon

19.5

What is the measure of the center angle of a regular n-gon?

$\frac{360}{n}^{\circ}$	# Sides	Poly Name triangle	Center Angle Measure 120
In chapter 7 we found the area	4	quadrilateral	90
of various reg polyswhich of these did you work with?	5	pentagon	72
Triangle	6	hexagon	60
Quad Hexagon	8	octagon	45
Why only those?	9	nonagon	40
Only ones that have 30-60-09 or 45-45-90	10	decagon	36
for apothem triangle	n	n-gon	360 _{/n}

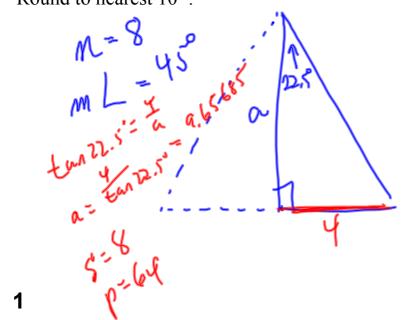
L9.5

Now with the trig ratios all the rest are open to us!

# Sides	Poly Name	Center Angle Measure
3	triangle	120
4	quadrilateral	90
5	pentagon	72
6	hexagon	60
8	octagon	45
9	nonagon	40
10	decagon	36
n	<i>n</i> -gon	360/n

L9.5

Now with the trig ratios all the rest are open to us!


We can work with any center angle measure!

# Sides	Poly Name	Center Angle Measure
3	triangle	120
4	quadrilateral	90
5	pentagon	72
6	hexagon	60
8	octagon	45
9	nonagon	40
10	decagon	36
n	<i>n</i> -gon	360/ _n

Example

Find the area of a regular octagon w/side length 8m. Round to nearest 10^{th} .

A-2 (9.65/64)

309.0

Example

Find the area of a regular pentagon w/radius length 18. Round to nearest 10th.

M=5 r=18 mL=13° S=24

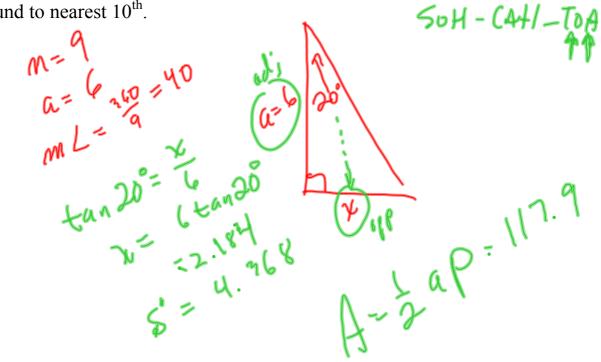
cos 36° = 18

4= 18 (05.36°

2 (4.5623)

4= 18 5:136°

2 10.5801


2

A= = ap = 170.4

Example

3

Find the area of a regular nonagon w/apothem 6. Round to nearest 10th.

Write the steps to take in order to find the area of a regular polygon w/n sides.

1) Determine # sides

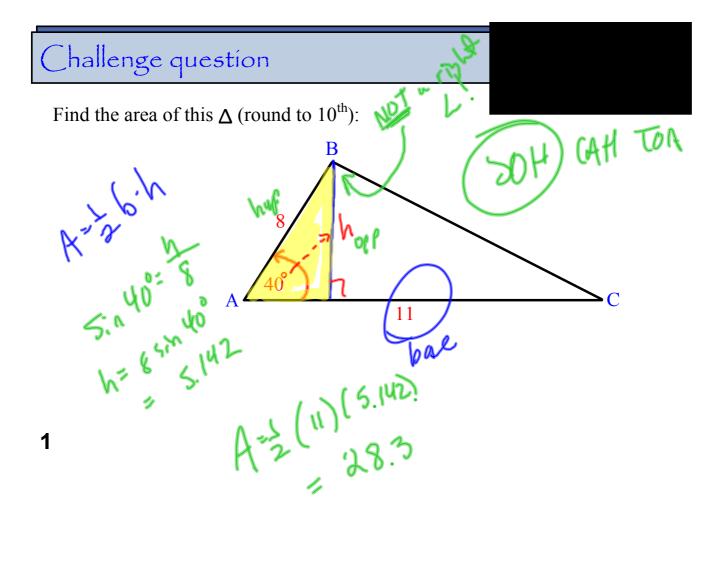
- 1) Determine # sides
- 2) Determine center angle

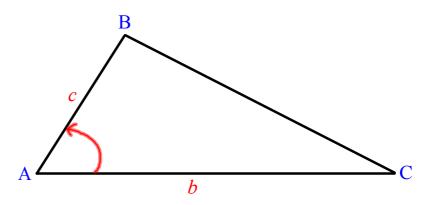
- 1) Determine # sides
- 2) Determine center angle
- 3) Determine apothem

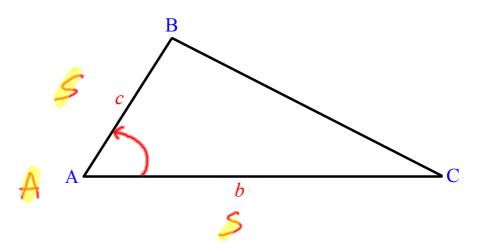
L9 5

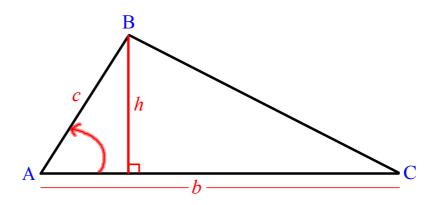
- 1) Determine # sides
- 2) Determine center angle
- 3) Determine apothem
- 4) Determine perimeter

L9.5

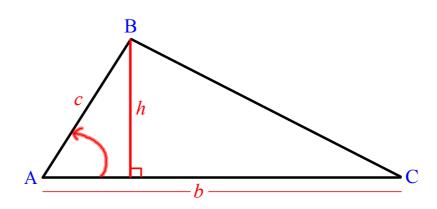

- 1) Determine # sides
- 2) Determine center angle
- 3) Determine apothem
- 4) Determine perimeter
- ... for any of the above

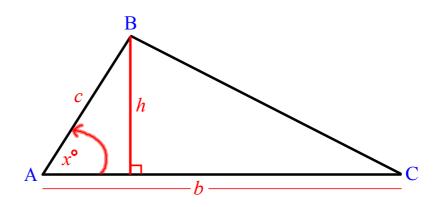

L9.5


- 1) Determine # sides
- 2) Determine center angle
- 3) Determine apothem
- 4) Determine perimeter
- ... for any of the above * may be given


L9.5

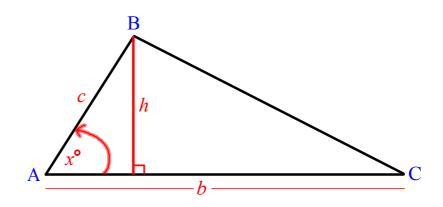
- 1) Determine # sides
- 2) Determine center angle
- 3) Determine apothem
- 4) Determine perimeter
- ... for any of the above
 - * may be given
 - * use trig ratios if not



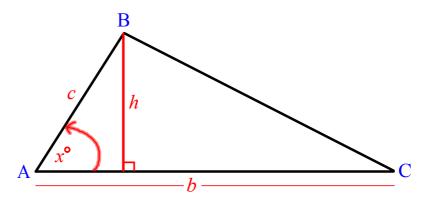

Theorem 9-1

L9.5

$$sin A = \frac{h}{c}$$


$$sin A = \frac{h}{c}$$
$$h = c \cdot sin A$$

Theorem 9-1


L9.5

$$sin A = \frac{h}{c}$$

 $h = c \cdot sin A$
 $area_{\Delta} = \frac{1}{2}bh$

Theorem 9-1 Area of a Δ given SAS info 19.5

$$sin A = \frac{h}{c}$$

 $h = c \cdot sin A$
 $area_{\Delta} = \frac{1}{2}bh$

$$area_{\Delta} = \frac{1}{2} b \cdot c \cdot \sin A$$

Practice L9.5

pg 501 #11-13

HW problems

L9.5

Pg 500 #1-18, 20-27